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Abstract 

A direct stability analysis is conducted to investigate the 

convective instabilities of a natural convection boundary layer 

adjacent to an isothermally heated plate at Ra = 4.5×109 and      

Pr = 7.0. A previously reported frequency-filtering effect of the 

thermal boundary layer is clearly demonstrated by a random 

perturbation experiment. It is found that the entire thermal 

boundary layer may be divided into three regions according to 

the frequency evolution, which include an upstream low-

frequency region, a transitional region (with both low and high 

frequency bands) and a downstream high-frequency region. The 

thermal boundary layer may also be divided into two distinct 

sections based on the power of its spectral response, i.e. an 

upstream damping section with decaying power and a 

downstream amplifying section with increasing power. 

Furthermore, single-mode perturbation experiments have been 

conducted to demonstrate the occurrence of resonance in the 

thermal boundary layer. It is found that the resonance can be 

triggered over a particular band of frequencies, which is referred 

to as the frequency band of resonance.  

 

Introduction  

Stability characteristics of natural convection boundary layer 

flows are of continuing research interest because of its 

importance to the understanding of laminar-turbulent transition 

which in turn determines the rate of heat transfer. 

Previous stability analysis and experimental results show that a 

vertical natural convection boundary layer sharply filters random 

propagating perturbations to a dominant frequency and favours a 

certain band of disturbance frequencies for amplification. One of 

the pioneering experimental studies was performed by Eckert and 

Soehnghen [1], in which a Mach Zehnder interferometer was 

used to observe a laminar boundary layer flow in air subjected to 

natural disturbances. The experiments demonstrated that the 

boundary layer amplified a certain range of disturbance 

frequencies. Subsequent experiments by Hollman et al. [2] and 

Polymeropoulos and Gebhart [3] found similar behaviour. 

 

Theoretical study for predicting the frequency filtering behaviour 

of a vertical natural convection boundary layer subjected to 

uniform heat flux was firstly conducted by Dring and Gebhart 

[4].  A further study by Gebhart and Mahajan [5] concluded that 

the characteristic frequency of a vertical natural convection 

boundary layer flow only depends on the heating condition and 

the fluid properties. A good review of the theoretical and 

experimental studies concerning instabilities of a vertical 

boundary layer is available in Gebhart [6]. 

 

The present direct stability analysis is to further reveal the 

frequency-filtering effect in detail. Furthermore, numerical 

evidence for the occurrence of resonance in the thermal boundary 

layer is presented and discussed.  

 

Problem Formulation and Numerical Method 

The flow of interest is a two-dimensional natural convection 

boundary layer flow of a Newtonian fluid ( 7Pr  ) formed 

adjacent to an isothermally heated vertical surface (refer to the 

schematic shown in figure 1). The height of the heated plate is 

H  and the width of the computational domain is of e 0.5L H , 

which is determined based on the scale of the thickness of the 

viscous boundary layer (Patterson and Imberger [7]) to ensure 

that the right boundary is located sufficiently far from the outer 

edge of the viscous boundary layer. To minimize the effects of 

the lower horizontal boundary on the numerical solution, the 

plate is extended downwards by eH . The same strategy was 

adopted in Lin et al. [8].  

 

Figure 1. Schematic of the computational domain, with the shaded square 

near the leading edge of the heated surface showing the location of the 

superimposed perturbation source. Here 0  is the ambient fluid 

temperature and w  is the temperature of the heated surface at 0t   . 

 

The fluid in the considered domain initially is stationary and 

isothermal at the temperature 0 . The temperature of the rigid 

surface of interest is instantaneously raised to and maintained at 

W  at the start-up. The boundary conditions for the two 

boundaries of the extended region are rigid non-slip and 

adiabatic. The top and right far field boundaries are open 

boundary conditions where any backflow from the exterior is 

considered to be at the reference temperature 0 .  

 

The flow in the considered domain is described by the two-

dimensional Navier–Stokes and energy equations. The non-

dimensional form of these governing equations, under the 

Boussinesq approximation, can be expressed as follows:  
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where u  and v  are the velocity components in x  and y  

directions respectively, p  is the pressure, t  is the time, T  is the 

temperature. The quantities ,u  ,v  ,x  ,y  ,p  t  and T  are the 

corresponding dimensionless forms of  ,U ,V  ,X  ,Y ,P   and 

 , which are normalized as 
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. Here   and   is the 

density and kinematic viscosity of the fluid at the reference 

ambient temperature 0  and 
W  is the temperature of the heated 

surface. The Rayleigh and Prandtl numbers are defined as: 
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where g  is the gravitational acceleration,   and   are the 

thermal diffusivity and thermal expansion coefficient of working 

fluid (water) at the reference ambient temperature 0 .
 
Quantity 

w 0    
 

is the temperature difference between the heated 

plate and the ambient. 

 

A single value of Ra and Pr are considered here; Ra = 4.5×109, 

Pr = 7.0. The results for a wider range of these parameters will be 

reported separately. 

 

The term S  in the energy equation is used to introduce artificial 

perturbations in a small region ( 0 0.02x  and 0 0.02y  ) at the 

base of the thermal boundary layer, as shown in figure 1. Two 

types of perturbations, a random-mode and a single-mode, are 

investigated here. For the random perturbation experiments, the 

source term S  is specified as 2 ( ( ) 0.5)S A rand t    with 9A  . 

Here ( )rand t  is a random number generator, generating numbers 

between 0 and 1; and A  is the perturbation amplitude which is 

determined according to  the amplitude adopted in Armfield and 

Janssen [9]. As the thermal boundary layer flow considered in 

Armfield and Janssen [9] is in the context of an internal flow in 

an enclosed cavity, which is different from the present 

investigation in which the flow is external and there is no thermal 

stratification, further numerical tests have been conducted to 

ensure the response of the thermal boundary layer to the 

perturbations is linear. For the single-mode perturbation 

experiments, the source term is specified as s ptsin(2 )S A f t  . 

Here ptf  is the perturbation frequency and sA is the perturbation 

amplitude which is chosen to be 3.6A  so that spatial 

amplification characteristics can be discerned clearly at the 

Rayleigh number 94.5 10Ra   considered in the present study.   

 
The governing equations along with the initial and boundary 

conditions are solved implicitly using a finite-volume method 

with the SIMPLE scheme (Patankar [10]) for pressure-velocity 

coupling. The spatial derivatives are discretized using the second-

order central-differencing scheme except for the advection terms 

which are approximated by the QUICK scheme (see Leonard 

[11]). The unsteady terms are integrated by a second order 

backward difference scheme. Mesh and time-step dependency 

tests have been conducted with three mesh systems 

(400×149,700×249 and 800×299) and three time-steps                  

( 71.7 10t    ,1/ 2 t  and 4 t ). Based on these tests, the mesh 

system 700×249 and the time-step 71.7 10t    are adopted. 

 

Results and Discussion 

Response to Random Perturbations 

In order to obtain insights into the frequency-filtering effect and 

frequency evolution behaviour of the thermal boundary layer, a 

direct stability analysis is performed, with random perturbations 

superimposed onto the base flow at the upstream of the boundary 

layer. 

 

 

 

 

 

 

 

Figure 2. Power spectra of the temperature time series at various stream-

wise locations, demonstrating the evolution of the boundary layer 

frequencies. (a) the upstream low-frequency region; (b), (c) and (d) the 

transitional region with both the low and high-frequency bands; (e) the 

downstream high-frequency region. 

 

Spectral analyses of the temperature time series (obtained at 
36.25 10x   ) at the quasi-steady stage are carried out to 

examine the frequency-filtering effect of the thermal boundary 

layer. Figure 2 presents the spatial evolution of the spectra of the 

temperature time series in the stream-wise direction (from bottom 



to top). It is clear in figure 2 that the boundary layer may be 

divided into three distinct regions, which includes an upstream 

low-frequency region, a transitional region (with both low and 

high frequencies) and a downstream high-frequency region. It is 

worth noting that the random perturbations introduced upstream 

are similar to white noise which contains a full range of 

frequencies. It is seen in figure 2(a) that only a narrow band of 

low frequencies of the random perturbations has survived in the 

upstream boundary layer. As the perturbations are convected 

downstream, another high-frequency band appears in the spectra 

and grows as it travels in the stream-wise direction while in the 

meantime the low-frequency band decays (indicated by the 

variation of the power of the two bands shown in figures 2(b), (c) 

and (d) respectively). This intermediate region with the co-

existence of both the low and high-frequency bands can be 

referred to as the transitional region. Further downstream, as 

shown in figure 2(e), the low-frequency band has been 

completely filtered out by the boundary layer, whereas the high-

frequency band has survived. This high-frequency band can be 

referred to as the characteristic frequency band of the thermal 

boundary layer as it determines the instability and resonance 

properties of the thermal boundary layer. These properties will be 

revealed by the single-mode perturbation experiments to be 

described in the following section. Note that here the dividing 

frequencies of the low and high frequency bands of the boundary 

layer shown in figure 2 are indicative only. The lower and upper 

bounds of the frequency band are approximately determined in 

the following section. 

 

 

Figure 3. Spatial evolution of the peak frequency and the corresponding 

power. (a) peak frequency and (b) spectral power at the peak frequency. 

 

The peak frequencies (with the highest power on the spectra) at 

different stream-wise locations of the boundary layer are also 

indicated in figure 2. It is seen in figures 2(a)-(c) that in the 

upstream part of the boundary layer, the peak frequency initially 

appears in the low-frequency band. Further downstream, 

associated with the decay of the low-frequency band and the 

growth of the high-frequency band, the peak frequency shifts to 

the high-frequency band (i.e. the characteristic frequency band of 

the thermal boundary layer), as shown in figures 2(d) and (e). It 

is also observed that above the height 0.25y   the peak frequency 

remains unchanged, which is therefore referred to as the 

characteristic frequency of the thermal boundary layer (refer to 

Gebhart and Mahajan [5]). The spatial evolution of the peak 

frequency pf  and its corresponding power ( )P f  in the stream-

wise direction are plotted in figure 3. It is interesting to note that 

the evolution of the peak frequency appears as a three-step 

development, approximately corresponding to the three distinct 

regions described above. Figure 3(a) confirms that the 

characteristic frequency appears around 0.25y  , and beyond 

this location the peak frequency remains unchanged. The 

dimensionless characteristic frequency determined by this 

random perturbation experiments is approximately 37900 for the 

present case. It is also seen in figure 3(b) that the spatial 

evolution of the spectral power of the peak frequency includes 

two stages, firstly a decaying stage upstream and secondly an 

amplifying stage downstream. The decaying stage is constrained 

in a small upstream region, which covers the low-frequency 

region and most of the transitional region described above. 

 
Response to Single-mode Perturbations 

The response of the thermal boundary layer to single-mode 

perturbations of different perturbation frequencies is 

demonstrated in figure 4.  The temperature time series in this 

figure are all obtained at 0.83y  . It is seen that the maximum 

oscillation amplitude at the quasi-steady stage is triggered by the 

perturbation at the characteristic frequency cf . As the 

perturbation frequency deviates from the characteristic frequency 

in either direction, the amplitude of the temperature response 

decreases. This result clearly demonstrates that the thermal 

boundary layer only responds to a particular band of frequencies 

which may be referred to as the frequency band of resonance rB . 

 

 

Figure 4. Temperature time series at 0.83y  in the thermal boundary 

layer perturbed at different perturbation frequencies. The interval of two 

consecutive perturbation frequencies is 8600. The temperature time series 

are shifted vertically for clarity. The shifted values can be seen from the 

temperature at  0t   .  

 

The stream-wise temperature profiles at 46 10t    (i.e. in the 

quasi-steady stage, refer to figure 4) in the thermal boundary 

layers perturbed at different perturbation frequencies are shown 

in figure 5, in which the temperature is measured along the 

vertical line of 36.25 10x    and the interval of the perturbation 

frequency f  is of 8600. Figure 5 shows that the perturbation at 

the characteristic frequency results in the largest wave amplitude 

in the downstream boundary layer, whereas perturbations at 

frequencies deviated from the characteristic frequency results in 

much smaller wave amplitudes. The temperature fluctuation 

becomes negligibly small at 3pt cf f f    and 3pt cf f f   , 

suggesting that the boundary layer responds to a frequency band 

approximately between c c3 ~ 3f f f f    . It is also seen that the 

oscillations of the temperatures are indiscernible in the upstream 

part of the boundary layer. However, the perturbations start to 

grow above a certain height and are amplified rapidly in the 

stream-wise direction.  



 

Figure 5. The stream-wise temperature profiles along 36.25 10x   in the 

thermal boundary layer at 46 10t   . (a) Profiles in the boundary layers 

perturbed at pt cf f ; and (b) profiles in the boundary layer perturbed at 

pt cf f . The interval f is 8600 and pt 0f 
 
represents the unperturbed 

case. 

 

The numerical evidence presented above has clearly 

demonstrated that the thermal boundary layer favours a particular 

band of perturbation frequencies for amplification. The lower and 

upper bounds of the frequency band is approximately determined 

below.  
 

 

Figure 6. Comparison of the frequency bands obtained from the random 

and single-mode perturbation experiments. 

 

Figure 6 plots the standard deviation of the temperature 

oscillations against the frequency of the single-mode 

perturbations at three different locations. The power spectrum of 

the temperature time series obtained at 0.83y   in the random 

perturbation experiment is also superimposed on the plot. As 

expected, the maximum standard deviation is observed at all 

three locations at a perturbation frequency around 38000, which 

is approximately the same as the characteristic frequency of the 

thermal boundary layer identified above. Figure 6 also shows 

excellent correlation between the random-mode perturbation and 

single-mode perturbation experiments in terms of the frequency 

response. Both numerical experiments suggest that the lower 

bound LBf  of the characteristic frequency band is about 42 10  

and the upper frequency bound UBf  is approximately at 47 10 . 

This result implies that the resonance frequency band of a 

thermal boundary layer at a given Rayleigh number can be 

determined by performing either random or single-mode 

perturbation experiment. In fact, the characteristic frequency 

band of the thermal boundary layer (i.e. the survived high-

frequency band shown in figure 2(e)) determines the resonance 

properties of the thermal boundary layer.     

 

 

Conclusions 

Direct stability analysis has been used to investigate the 

instability and resonance characteristics of the natural convection 

boundary layer formed adjacent to an isothermally heated vertical 

flat plate. 

The spatial evolution of the boundary layer frequencies is 

visualized from the spectra of the temperature time series in the 

stream-wise direction. It is found that the thermal boundary layer 

exhibits three distinct frequency regions, i.e. an upstream low-

frequency region, a transitional region and a downstream high-

frequency region. The random-mode perturbation experiment 

also reveals that the spatial evolution of the spectral power of the 

peak frequency experiences two stages, firstly a decaying stage 

and secondly an amplifying stage downstream. Furthermore, the 

single-mode perturbation experiments present evidence for the 

occurrence of resonance of the thermal boundary layer subjected 

to perturbations at frequencies in the frequency band of 

resonance.  
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